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Mathematical modeling of the target penetration process is an
old field and the great variety of models we now have reflects this
fact. At one end of the model spectrum we have simple empirical
interpolation formulas which can serve as convenient summaries of
what we know already, though they cannot further our understanding.
At the other extreme we have very complicated continuum models which
include all the science we think is appropriate and offer the possi-
bility of prediction without further experimentation. However, such
advanced models have a number of shortcomings at present. On the one
hand, many of the material properties needed to implement them have
not been measured, while on the other, the numerical methods used in
solving the equations involved are not yet sufficiently advanced to
provide either rapid or routine calculational tools. Consequently,
they have not yet improved our understanding of penetration very much,
at least in the ordnance range. Between these two extremes there are
a number of intermediate approaches which are based on simplified
physical laws and so offer the possibility of improved understanding
together with a calculational tool which can be routine, rapid and
reli able

Theoldest type of simplified physical model in use consists of

replacing the projectile by a mass point and the target by a force
field. If the striking mass, mo, is constant in time, then the equa-
tion

mv = F = -(a + blv + ()

Scan be used to describe certain types of rectilinear motion. Here a,
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b and b are constants so the force, F, is a quadratic form in the1 2
velocity, v. Euler and Robins in 1742 applied this equation to
target penetration with b =b = 0. In 1830 Poncelet did the same
with only b 1 =0, while Resal continued this tradition in 1895 by
applying the solution with only a = 0. Today we know that both the
velocity, v = s, and the displacement, s, can be found explicitly as
closed form functions of time by standard integrations with none of
the constants zero.

In applications of equation (1) to penetration problems, the
force is taken antiparallel to the velocity and the "normal" case of
zero obliquity impact is discussed. Thus equation (1) is limited to
one-dimensional motion, since there is no force component to make the
mass deviate from a straight line. This is a severe limitation since
curvilinear motion, including ricochet, is known to occur. Even for
rectilinear motion the force in equation (1) cannot describe embedment
of the projectile in the target unless a = 0. If a # 0, then F can
never vanish and the mass can cone to rest only momentarily instead of
permanently as occurs in the case of embedment.

The constant a in equation (1) has been interpreted as the
force needed to detach a certain amount of target material and move it
out of the way of the projectile as a single plug or in some other
manner. Since a projectile of larger cross-sectional area, A, must
move more target material, this force is usually taken to he p~ropor-
tional to A. Similarly, since a thicker target plate will require the
removal of more material for a given A, we might also take this force
proportional to the target thickness, T. Thus, the product, AT, be-
comes a lower bound on the volume of target material which is removed
during a complete perforation. If the projectile striking speced, v,0
is increased, then in general more momentum will be transferred to
the material which is removed, so it is also reasonable to assume a
dependence of this force on v 0as well. In this paper we will use the
simple assumption that0

a =a 0T +aIv 0(2)

where a 0and a1 depend on the p~roperties of the target and projectile
awlas the projectile shape.

Another interpretation for part of this force is the frictional
resistance offered by the target which depends on the area of contact
-rather than the cross-sectional area. It also depends on the pressure
in the simplest approximation and so also depends on v 0.
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The term b v in equation(l) can be called a viscous force.
This does not imply the presence of the liquid state. The terminol-
ogy, "viscosity of solids" is well established and only implies a
proportionality between shear stress and time rate of strain. The
viscosities of various solids have been measured up to explosive rates
of motion and a discussion of these experiments has been given by
Walters1 . This force also will depend on the geometry of the projectile.
For a sphere moving through a viscous liquid, for example, Stokes'law
gives us a force which depends on the radius of the sphere as well as
the speed.

2
The term b2v in equation (1) can be called a drag force.

Again this does not imply the presence of a liquid. Drag forces in
solids are not well studied, but they should also depend on the cross-
sectional area of the projectile. In an isotropic fluid such as still
air, the components of the drag force are b vi and b v! for the two
coordinates x and z with v2= 2 + 2 .ln an anisotropic medium we

might use b2x J b 2 or the components of the speed instead of the speed,
or both. Since penetration problems of interest are very anisotropic
because of the presence of air-metal interfaces which make the resis-
tance parallel or perpendicular to such interfaces quite different, we
propose the form b s with s = x,y,z in general.

2s

Several of the forces described above involve areas which can
depend on the depth of penetration. For example, for a projectile with
a curved nose the cross-sectional area will increase as it penetrates
more deeply, while for a long rod the contact area will increase with
penetration depth. Such behavior will not generally be simply propor-
tional to s. If the trajectory is curved the situation may change in
time and when a projectile enters its final breakout phase before
exiting the target in a ricochet or perforation, the various forces
beine described may decrease as the penetration progresses. In any

case the amount of target material moved out of the way in time t
depends on s, the current length of the trajectory. For simplicity
we will assume a form cs with s = x,y,z and c constant.

This line of reasoning suggests that we consider component
equations of motion of the form

o.2

ms. ofs~ ;b +~ s cs = (3r0s + Fs  m 0 s + + bls s b2s s (3)

where s = x,y,z in a rectangular coordinate system with origin at
the point of impact. For a plate target let us take the z axis
pointing along the line of flight of a projectile which impacts at

... .. . .. . .A
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zero obliquity and choose the x axis so that an oblique striking veloc-
ity vector lies in the x,z plane. Then the y coordinate is ignorable
for such a tarfet which is "effectively infiiite" in the x,y plane.
Analysis shows that we can neglect the b2s

s term in equation (3) and
still describe ricochet, embedment and perforation. However, we cannot
do this if we neglect the c §s term. This is fortunate since we can find
an exact solution for equation (3) if we neglect b2s 

2. Such a solution
should be appropriate for lower speeds like those of ordnance interest
and can, e amended if we wish to include hypervelocity impacts. Without
the b2ss term the solution is

+ Y1 t tAs -- +ls (4)s = ls e _ + Als e s

where A = (v + A Ys )/( - y) for initial conditions s = 0 and
= v at t = 0. Here vox =' v 0in 00 and v o v cos 0 where 00 is

the sriking obliquity measuredounterclockwise from the negative z axis
to v . In addition y+ = - %at r--c /mo where a = b /(2 m ), and
Y < Y s < 0 if s an s always remain finite. The degenerate case of

CL c /m has a special solution2 . Positive c and real y requires

0 < cs < m a
s 0s

The constants A in equation (4) are position components of a
stable node and have fhe form

As = - as/c s = -(a osT a lsvos)/C s  (5)

when we use equation (2) in component form. Here T = T while T = T tan
0If we include the b s term we can write approximate solutions by

using standard perturbailon theory or we can construct closed forms which
reduce to the known solutions when b2s _" 0 or c 4 0. We will not dis-
cuss such matters here. Instead, let us consider the force components
at the ricochet limit velocity, v o., and at the perforation limit velo-
city, v oPL. At the ricochet limit°Of = v and F = z=: - 0 as t
so (even if we retain the drag force ozRL z

Fz + 0 = - [aozT + alz VozRL] (6)

and at the perforation limit, v o VozPLZ T and F=z- 0 as t + -,o

Fz  - [a ozT + alzvozPL +czT ] .  (7)

From equations (6) and (7) we can find a /c and a Ic in terms of
VozRL, vozPL and T. If we use these values in equation (5), we obtain

Az T(voz- VozRL)/(VozPL - ozRL). (8)

I ___
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If v0 o< vozRL then A < 0 and ricochet will occur.

If voz > VozPL then Az > T and perforation will occur.

If 0 < A < T, then embedment will occur. Thus A , the z-component
of the final position, is a convenient index for predicting the
eventual outcome. A similar procedure for the x-component of the
force gives

x = [ (LoxPL xpL VoxRL XRL ox oxPL-VoxRL . (9)

For the z-component we had the ricochet limit position z = 0 and thea"RL
perforation limit position z 1 = T. Similarly nd x are the
x-components of these limit positions and A is t x-comp nent of
the final position towards which the motionXtends. Since all of
these limit positions and velocities are measurable quantities, then
o/c ,a - /c and soas/c (or A ) for s = x,y can be determined
os s ls s s s s

experimentally.

As mentioned above, the b parameters can be estimated from
viscosity experiments. For a spAere we can take advantage of the
fact that Stokes' law is proportional to the speed and write
b - RP; where R is the radius and p is the dynamic (density-ls

dependent) viscosity as discussed by Walters1 . For other shapes we
might expect somewhat different forms. If we neglect the b2s para-
meters we are read)' to calculate trajectories, exit speeds and exit
angles for a variety of conditions.

Figuresla and lb show the exit speed and exit angle of a one
gram steel sphere which strikes a 9.53 mm thick aluminum plate at
0 = 450 over a range of v which covers the ricochet, embedment and
perforation regions. The Sata points were obtained by Backman and
Finnegan3 , while the solid lines were calculated by using the time
derivatives of the components in equation (4) with the parameters
indicated in the Figures. The exit speed is v = /IT-- while the
exit angle, 0 = arc tan (i/1), is measured from the z axis in the
counterclockwise direction. For perforation, 0 < 90* , while for
ricochet 0 > 900. Similar calculations for other striking obliquities
from 0 to 60 degrees using the same parameters also show general
agreement with experiment. Comparisons for other materials and other
taret and projectile geometries are in progress. If we retain the
b 2s 2 term in equation (3), the agreement with experiment can be
improved.

Now let us extend our linear model to an eroding penetrator.
For a constant mass penctrator energy is dissipated through the
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viscous term ard shows up as a decrease in velocity. If M ' 0,
energy can also be dissipated by a decrease in mass. Since the only
dissipative term we have in our force field is the viscous term, we
might consider amending this term to reflect this additional means of
dissipating energy. If we modify this term to be (b - c A)s where
C is a positive, dimensionless constant, we have a t0rm wiich reduces
to our previous form when A = 0. If A < 0 and mass is lost, then this
term is larger, and if i > 0 it is smaller. Cases of A > 0 could
include precipitation of various kinds, while cases of it < 0 could
include re-entry shield ablation, penetrator erosion and a variety of
other phenomena. Our equation, neglecting drag, becomes

ms + ms + a + (bl - sM) S + c S 0 (10)s Is Ss

which reduces to equation (3) for b = b = 0. If we make an arbitrary
transformation of the independent variagie, time, to a new independent
variable, 0, we find

Ms,, + B s' 4 +a * c s = 0 (11)

where a prime means d/d and
M 4 m 2  (12)

while
Bs  [m' + bls +(-e s) $. (13)

Since tie are free to choose 0(t), let us choose it so M and B inS .
equations (12) and (13) are constants. Then A = -2m$"from equation
(12) so we can eliminate m$' from equation (13) and obtain
B = [b+(.5-Es)!)$ = [b + ('5-Cs)mo] o since B is constant. InS I s 15s 0 .SJ
order that B is b in the constant mass case m = m = O,we must
haveisebls B= 1. ThusM = m For this

,S* blso IS o .=1 0 0 =10Fo rti
reason we will call this choice of 0 a constant mass transformation. If
we eliminate m and m from equation (13) in favor of $' and $2 we can
integrate with respect to 0 to obtain $ and then with respect to t to
obtain

(bIs/Bs) S + Ds(1-bis/Bs)(1 - e-' / s) = t (14)

as the transformation which makes M and B constant. Here D = m (2c -1)/B S. If we use $ in equation (12), we fina

m = M ° [(1-b ls/B s)e-/Ds + bIs/B]
2  (15)

and the solution of equation (11) is

g

. , .... . ..t I •
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Figure 2 Dural rod penetrating polyethylene: measured and
calculated values,
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Figure 3 .' Residual speed and mass versus striking speed for a
long steel rod penetrating a steel Iplatc: measured
and calculated values,
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s - +A
2s +A 2 se s (16)

+ +

with the same mode A as equation (4). Here Als and X- are
analogous to Al and Y I above, s

is

If we analyze the case ; < 0; we find2 that for E > .5 and
b > 0, m will not vanish, although it may become very Ssmall if
b ls/Bs << 1. For c < .S m will always vanish in a semi-infinite
target. Since penetrators do not al.ays vanish in a semi-infinite

target, we see why E = 0 in equation (10) (a particular case of
C < .5) is not a general enough case to apply to penetration.

5

1,e have applied the particular solution represented by equa-
tions (14), (15), and (16) to a variety of problems. A special case
of a frictionless harmonic oscillator with variable mass is a liquid-
filled vessel of constant horizontal cross-section with a hole in the
bottom through which it loses its contents as it oscillates on a
spring in the earth's gravitational field. Here we will merely
mention the result 2 that the motion and its variable periodicity can
be described over many cycles from full to nearly empty vessel with
an accuracy of better than 5%. Our main interest here is to apply
this solution to an eroding penetrator.

Figures 2a and 2b give the depth of penetration, P = z+k/2,
of the tip of a dural rod of initial length k. = 63.5 mm and constant
diameter d = 6.35 mm and the variable length £ = m/[Tpd 2 /4] versus
time in a semi-infinite polyethylene target. The data was obtained
by Tate4 while the calculations employed equations (14),(15) and (16).
An alternate force calculation compatible with equations (14) and (15)
gave the dashed curve.

Figures 3a and 3b give the exit speed and the fractional mass
remaining after perforation of a 6.35 mm thick steel plate by a 7.78
gm steel rod (Z. /d = 50 mm/5 mm) striking end on at zero obliquity 5
and various speeds, v . The data were obtained by Herr and Grabarek5

while equations (I. ), (15) and (16) were used for" the calculation. An
alternate force calculation compatible with equations (14) and (15)
gave the dashed curve. For simplicity the initial erosion rate was
taken to be independent of v , although better agreement could have
been obtained by assuming that m0 is a function of v 0 . Since i declines
only slightly during the brief times required for perforation over the
measured range of v ,we have a simple explanation for the observed
fact that the length of rod remaining increases as v increases (for a
fixed target thickness). At higher v0 the projectile spends less time

I,
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in the target so that less erosion takes place (since the rate is
approximatel constant). Other types of behavior are also allowed

by the model .

In this paper we have discussed a model which describes the

particle dynamics of penetration in a manner which can improve our
understanding and provide us with a routine, rapid and reasonably
reliable method of calculation. Once a library of experimental
results has been established we should be able to interpolate and

extrapolate with considerable confidence. The model describes the
main featuresof oblique penetration, namely exit speed, angle and
mass, over the entire region of interest, including richochet
embedment and perforation. Applications to multiple plate targets
and other geometries should also be possible. In addition, other
features of interest such as projectile breakup2 can be linked with

this model.
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